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Abstract
COVID-19 is a serious respiratory infection caused by a beta-coronavirus that is closely linked to SARS. Hypoxemia is a 
symptom of infection, which is accompanied by acute respiratory distress syndrome (ARDS). Augmenting supplementary 
oxygen may not always improve oxygen saturation; reversing hypoxemia in COVID-19 necessitates sophisticated means 
to promote oxygen transfer from alveoli to blood. Inhaled nitric oxide (iNO) has been shown to inhibit the multiplication 
of the respiratory coronavirus, a property that distinguishes it from other vasodilators. These findings imply that NO may 
have a crucial role in the therapy of COVID-19, indicating research into optimal methods to restore pulmonary physiol-
ogy. According to clinical and experimental data, NO is a selective vasodilator proven to restore oxygenation by helping to 
normalize shunts and ventilation/perfusion mismatches. This study examines the role of NO in COVID-19 in terms of its 
specific physiological and biochemical properties, as well as the possibility of using inhaled NO as a standard therapy. We 
have also discussed how NO could be used to prevent and cure COVID-19, in addition to the limitations of NO.
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Introduction

Coronaviruses (CoVs) are RNA viruses that predominantly 
infect birds and mammals. These viruses typically have a 
genome of ~ 30 kilobase (kb), named after the protrud-
ing coronary spikes on the virus’s surface (Fehr and Perl-
man 2015). According to the World Health Organization, 
356,955,803 confirmed cases of COVID-19 have been 
reported, with 5,610,291 deaths (WHO 2022). Depending 
on the nation and age group, the death rate has changed 
significantly. Although some individuals are asymptomatic, 
COVID-19 symptoms include fever, dry cough and myal-
gia. COVID-19 exhibits histological similarities with SARS 
and MERS in worsening lung injury and sepsis, which are 
the primary causes of mortality (Takahashi et al. 2020; Lu 
et al. 2020; Amoretti et al. 2002). Based on these char-
acteristics, SARS-CoV-2 is a member of the SARS-CoV 
genus and infects cells by a specific method that involves 
the S-protein attaching to the membrane receptor angioten-
sin converting enzyme 2 (ACE-2). Despite having identical 
genomic structures, SARS-CoV-2 has a greater infectivity 
than SARS-CoV-1(Kumar et al. 2021a, b, c; Kumar et al. 
2021a, 2021b).
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There is currently no particular pharmacological therapy 
or vaccination available to treat COVID-19. Many research 
organisations across the globe have evaluated prospective 
antimalarial medications including hydroxychloroquine and 
azithromycin, antifilarial drug ivermectin and antiviral treat-
ments for their probable action against the COVID-19 ini-
tially. Hydroxychloroquine and ivermectin have been shown 
to inhibit viral import by acidifying cells. Some other drugs 
such as favipiravir, remdesivir, umifenovir, teicoplanin, 
doxycycline and dexamethasone when used in conjunction 
with immunotherapy were also found effective in combating 
the pandemic (Siddiqui et al. 2021). Moreover, in preclini-
cal and clinical studies, various natural plant substances are 
also studied. ( +)-Calanolide A and SP-303 are two plant-
based antiviral agents in clinical development for COVID-
19. Calanolide A is a C22 coumarin that is primarily used 
to treat HIV infection and is derived from the plant Calo-
phyllum langigerum, which is mostly found in Malaysia and 
Indonesia (Creagh et al. 2001; Currens et al. 1996; Ubillas 
et al. 1994). SP-303, on the other hand, is made up of oligo-
meric proanthocyanidins with a molecular weight of 2100 
Daltons and is derived from the latex of Croton lechleri, a 
Latin American plant (Wyde et al. 1993). Despite the fact 
that the process of drug development from natural products 
is time-consuming, their efficacy has been shown to be effec-
tive over an extended period of time. Surprisingly, recent 
research has identified mesenchymal stem cells (MSCs) as 
a possible treatment strategy for SARS-CoV-2 (Alzahrani 
et al. 2020). It is believed that MSCs inhibit viral infections 
via the release of particular cytokines; these characteristics 
are inherently present when the MSCs are in their niche 
prior to being separated from the parent tissue (Nile et al. 
2020). Therefore, MSCs and their exosomes (MSC-Exo) 
are likely to survive even when transplanted into patients 
who are infected with SARS-CoV-2 (NCT04276987). The 
reported clinical studies are being examined in order to pro-
vide information to researchers investigating stem cell–based 
therapies for SARS-CoV-2 infection because it is ambigu-
ous. An investigation into the inhibitory ability of a bioac-
tive sponge metabolite, ilimaquinone, targeting nine putative 
SARS-CoV-2-specific proteins that have been identified as 
attractive therapeutic targets is being carried out in the labo-
ratory. In the search for effective therapeutic development 
against COVID-19, the findings of this study promise to pro-
vide the groundwork for future validation of the inhibitory 
ability of the ilimaquinone in vitro and in vivo, as well as 
its use as an efficient inhibitor of SARS-CoV-2 papain like 
protease (Surti et al. 2020).

Recent research suggests that ventilator treatment is inef-
fective and may possibly increase morbidity and mortality 
(Richardson et al. 2020). A heated controversy has erupted 
over the use of inhaled nitric oxide (iNO) in the treatment 
of severe hypoxia caused by COVID-19. With the little 

clinical evidence to support it, the surviving sepsis cam-
paign advised the use of iNO as a rescue therapy in such 
patients with persistent hypoxia. Also emphasising that this 
treatment should be tapered down if there is no improvement 
after 24 h (Abou-Arab et al. 2020).

Nitric oxide is vital to the cardiovascular, respiratory and 
immunological systems (NO). Where NO is generated and 
concentrated determines its function. Abnormal NO levels 
are usually associated to the development and progression of 
illnesses, such as viral infection (Alamdari 2020). The role 
of NO, possible mechanism and therapeutic use in COVID-
19 have yet to be thoroughly investigated. NO was studied 
in COVID-19 from the standpoints of its general character-
istics: six recognized pathways in the lungs, potential func-
tions in COVID-19 aetiology and therapeutic application in 
COVID-19 prevention and therapy.

Bioavailability studies of NO in COVID‑19

When measured as nitrate and nitrite (NO metabolites) in 
severe COVID-19 patients, the generation of NOx was much 
higher compared to healthy people (controls) (Kleinbongard 
2003). Activation of macrophages is predicted during an 
inflammatory immunological response. Inflammation can 
cause the inducible synthase of nitric oxide (iNOS) in mac-
rophages to activate by 2–3 times, producing a high amount 
of NO and causing a local and systemic increase in nitrate 
and nitrite (Fraser 2020). However, thrombotic factor profil-
ing with immunoassays and studies with human pulmonary 
microvascular endothelial cells indicated that patients who 
sustained significant COVID-19 incurred excessive and irre-
versible endothelium damage, according to an original Cana-
dian clinical research (Becker 2020). Moreover, autopsy and 
surgical tissue specimens showed diffuse lypothelitis and 
apoptotic body diseases (Ozdemir and Yazici 2020). Moreo-
ver, COVID-19-related complications were associated with 
substantial decrease in endothelial NO (Amraei and Rahimi 
2020), demonstrating a closely linked pulmonary injury and 
a NO/ROS imbalance (Varga 2020). iNOS and eNOS esti-
mations have suggested involvement of NO pathways during 
infection (Li et al. 2020). The following four pathways are 
potentially involved in SARS-CoV-2 infection (see Fig. 1).

Although the major location of COVID-19 infection 
is bronchial ciliated epithelium and pulmonary type II 
cells, electron imaging has detected leftover virus par-
ticles in endothelial cells. Infections in endothelial cells 
enhance apoptosis and decrease endothelial NO pro-
duction (Banu et  al. 2020). Furthermore, the progres-
sion of viral infection also reduces NO generation. The 
SARS-CoV-2 glycoprotein-S protein infects host cells 
by binding to angiotensin-converting enzyme 2 (ACE2) 
(Gopal and Varma 2020). ACE converts angiotensin-I to 
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angiotensin-II (AngII) and promotes NO production by 
endothelial cells (Al-Sehemi et al. 2020). The removal of 
ACE2 and its upstream product AngII are assuaged by 
downregulation of ACE2. ACE suppresses NO production 
while promoting the production of ROS and inflammation. 
AngII also stimulates macrophages to produce inflamma-
tory cytokines and reactive oxygen species (ROS), result-
ing in increased inflammatory responses and an imbalance 
of NO/ROS (England et al. 2021; Clark 2007). Inflamma-
tion is the immune system’s natural reaction to trauma and 
threats. Infections with viruses cause a substantial increase 
in inflammatory cytokines in the peripheral circulation, 
setting off a strong cytokine storm (Channappanavar 2017; 
Song et al. 2020). When intense inflammation lasts for an 
extended period, inflammation also damages many tissues 
and organs. Furthermore, inappropriately intense inflam-
mation contributes to an imbalance of reactive oxygen 
species which leads to oxidative stress (Shenoy 2020). 
Inflammatory cytokines and chemokines are found in the 
serum of patients with severe COVID-19, which promote 
excessive ROS production in the mitochondria, ultimately 
leading to oxidative damage and cell death (Nambiar et al. 
2018; Guzik et al. 2003). ROS also alters vascular tone by 
raising intracellular calcium concentration and decreasing 
NO bioavailability (Uehara et al. 2015).

The impact and bioavailability of NO in COVID-19 
patients are intimately connected to the development of dis-
ease (Gibaldi 1993). The general biochemistry of NO will 
be discussed below for a better understanding of its function 
in COVID-19.

Role of cytokines in SARS CoV‑2 infection

Immune cells and molecules are mobilised in a rapid 
reaction to viral, bacterial or other microorganism infec-
tion, drawing on metabolic resources (O’Neill 2015; Wu 
et al. 2016; Bambouskova et al. 2018). It is necessary to 
reprogram the host metabolism in order to create efficient 
antiviral defensive responses in response to metabolic dys-
functions induced by viral infection. The molecular pro-
cesses underpinning the innate immune response to viral 
infection are revealed by studies on virus-cytokine inter-
actions (Agalioti et al. 2000; Cheng et al. 2014; Sanchez 
and Lagunoff 2015).

Cytokines are polypeptide signalling molecules that 
regulate several biological processes through cell sur-
face receptors (Bartee and McFadden 2013). Among the 
most important cytokines are those that are involved in 
adaptive immunity (e.g. interferon (IFN)-I, -II and -III; 
proinflammatory cytokines and interleukins (ILs) (e.g. 
interferon (IFN)-1, -II, and -III; IL-1, IL-6, and IL-17 
and TNF-α) and anti-inflammatory cytokines (such as 
IL-10)). To respond defensively to stress-inducing internal 
events such as tumours and infections, host cells generate 
cytokines, which play a critical function in the regula-
tion of cell metabolism (Turner et al. 2014; Vabret et al. 
2020). Cytokines are proteins that play a significant role 
in the regulation of cell metabolism. Blanco-Mello et al. 
(2020) reported a different and inappropriate inflamma-
tory response associated with SARS-CoV-2 infection in 
the context of COVID-19 illness in the literature. Accord-
ing to these researchers, people with comorbidities are 
more likely to have an “inappropriate and weak immune 
response” than those without. As a result, viral replica-
tion may be favoured, and problems associated with severe 
instances of the illness may be exacerbated.

COVID-19 has been the subject of a large number 
of studies, and abnormal levels of many cytokines and 
chemokines have been noted in the patients: IL-1, IL-2, 
IL-4, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-
CSF, IP-10, IFN-γ, MCP-1, MIP 1-α (Huang et al. 2020; 
Liu et al. 2020; Wang et al. 2020c; Chen et al. 2020a, 
b). An increase in inflammatory cytokines and a decrease 
in antiviral defences associated with the innate immune 
system may be the most important factor in SARS-CoV-2 
infection.

Multiple clinical indications, such as IFN-γ production, 
which results in symptoms such as headaches, chills, 
dizziness and fever, are strongly connected with the 
release of several cytokines. In addition to causing flu-
like symptoms, such as fever, exhaustion and malaise, 
TNF-α also causes lung damage, vascular leakage, 
heart failure and the production of acute-phase proteins 

Fig. 1  Four possible mechanisms in COVID-19 aetiology regulate 
NO levels and bioavailability
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Shimabukuro-Vornhagen et al. (2018), along with other 
complications. Vascular leak syndrome is caused by the 
production of IL-6, which activates the coagulation and 
complement pathways, resulting in the most conspicuous 
manifestations of cytokine release syndrome (Hunter 
and Jones 2015; Tanaka et  al. 2016). Notably, IL-6 
promotes coronary artery disease and myocardial 
dysfunction, resulting in cardiomyopathies (Pathan 
et al. 2004). Furthermore, significant cytokine release 
syndrome may arise as a consequence of the stimulation 
of endothelial cells, and endothelial dysfunction can 
result in hypotension and poor blood coagulation. 
Taking into account of these findings, it appears that 
the virally induced immunopathological responses are 
crucial to the development of fatal pneumonia. About 
150 chemical mediators and inflammatory cytokines are 
secreted by NK cells, macrophages and T cells (Teijaro 
et  al. 2014). Apoptosis of endothelial and epithelial 
cells of the lung occurs during viral invasions, causing 
hypoxia, alveolar oedema and vascular leakage. Lengthy 
exposure to pro-inflammatory chemokines and chemokine 
receptor antagonists leads to lung scarring and mortality 
(Reghunathan et al. 2005).

Nitric oxide, oxidative stress 
and inflammation

Endothelial dysfunction is termed when vasodilator sub-
stances, like NO, become less bioavailable, while vasocon-
strictor substances become more abundant.

When NO bioavailability is reduced, it might be due to 
eNOS deficiency, a lack of cofactors essential for eNOS for-
mation on one hand, as well as excessive NO breakdown 
or inactivation from reactive oxygen species (ROS) on the 
other (Cai and Harrison 2000). Increasing the formation of 
reactive oxygen species (ROS) such as superoxide anion 
 (O2−), hydrogen peroxide  (H2O2), hydroxyl radical (HO•), 
hypochlorous acid (HOCl) and lipid superoxide radical in 
cardiovascular disorders is the primary cause of the reduc-
tion in NO bioavailability (Maadamanchi et al. 2005). ROS 
generation is regulated by an efficient system of antioxidants, 
molecules capable of neutralising ROS and thereby reduc-
ing oxidative stress, under physiological circumstances. To 
convert ROS to oxygen and water, endogenous enzyme anti-
oxidants such as SOD, glutathione peroxide and catalase 
are required. ROS may be present in excess compared to the 
antioxidant capability in pathogenic situations. A shift in 
the equilibrium in favour of oxidation, or ‘oxidative stress’, 
may negatively affect cell and tissue function. Endothelial 
cells (ECs) have a multitude of strategies for reducing oxida-
tive stress in the immediate environment. The endothelium 
generates SOD in response to shear stress, which neutralises 

ROS (Gimbrone and García-Cardeña 2016). Glutathione 
peroxidase, which may reduce oxidative stress, can also be 
expressed by endothelial cells [15]. Similarly, haem-oxyge-
nase (Nagy et al. 2010; Quan et al. 2001) offers another way 
for the endothelium cell to withstand local oxidative stress. 
Proinflammatory cytokines, on the other hand, might acti-
vate NADPH-oxidase in endothelial cells, increasing local 
oxidative stress (Pennathur and Heinecke 2007; Teuwen 
et al. 2020).

A high concentration of Ang II can cause oxidative 
stress, as well as a low concentration of Ang 1–7 (Fig. 2). 
Some of these ROS can oxidise the cysteine residues in 
the peptidase domain of the receptors ACE2 and RBD of 
the proteins SARS-CoV and SARS-CoV-2, keeping them 
in oxidised forms (disulphide) instead of in their reduced 
form (thiol) (Nordberg and Arnér 2001). The oxidative stress 
pathway may enhance the affinity of SARS-CoV and SARS-
CoV-2 S for ACE2 receptors, hence increasing the severity 
of COVID-19 infection (Hati and Bhattacharyya 2020). It 
was recently shown that the SARS-CoV-2 virus has long-
term effects on oxidative stress and the endothelium of the 
vascular endothelium (Chang et al. 2020). This led to the 
hypothesis that SARS-CoV-2, by producing mitochondrial 
dysfunction and oxidative stress, might set off a feedback 
loop that promotes a persistent state of inflammation and 
endothelial dysfunction long after the virus particles have 
been cleared from the body. Consequently, according to 
this suggested mechanism, SARS-CoV-2 first activates 
NADPH-oxidase, which results in the production of 
superoxide  (O2–), a reactive oxygen species (ROS) that is 
implicated in processes that degrade the electron transport 
chain (ETC) (Nguyen Dinh Cat et al. 2013; Li et al. 2013). 
Due to this mitochondrial dysfunction, there is an increase 
in oxidative stress and inflammation, which results in a 
feedback loop that keeps NADPH-oxidase activated, as well 
as inflammatory cytokine production and the loss of EC’s 
identity. In light of these putative long-term implications of 
SARS-CoV-2 infection on blood arteries, treating chronic 
oxidative stress and inflammation in the EC may be critical 
in averting future difficulties among the millions of people 
who have been diagnosed with COVID-19 (Petersen et al. 
2020).

Biochemical characteristics of NO

NO is a highly reactive molecule (Star 1993) that interacts 
with a wide range of reagents and regulates a number of 
signalling pathways. NO binds to metal centres, DNA and 
lipid-free radicals directly (Tripathi 2007). When nitric 
oxide (NO) reacts with oxides  (O2) or free radicals  (O2

−), 
reactive species are formed that damage target molecules 
(Susswein et al. 2004).
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Inducible NO synthase responsible for the synthesis 
of nitric oxide is found predominantly in macrophages 
and monocytes (Alvarez et al. 2020; Lee and Butt 2020). 
Depending on its source and concentration, NO has a dual 
function in various pathophysiological processes, including 
blood circulation and inflammatory response (Michel 1998) 
(Fig. 2).

The critical role of NO in the respiratory 
system

NO is an effective vasodilator and immune regulator (Friebe 
et al. 2020; Ricciardolo et al. 2020; Bohlen 2015; Teixeira 
et al. 2020). NO works by dilating bronchial/airway to pro-
mote oxygen uptake and also acts as a vascular anticoagulant 

and antiplatelet agent. NO functions as an anti-inflammatory 
agent, by inhibiting early non-specific immunity, by modify-
ing vascular inflammatory events and immune cell prolifera-
tion (Goeijenbier 2012). NO also has an antiviral action by 
inhibiting SARS-CoV-1/SARS-CoV-2 replication (Martel 
et al. 2020a). NO also operates in COVID-19 by four addi-
tional mechanisms, namely regulating blood flow, initiating 
anti-inflammatory responses, promoting anti-coagulation 
effects and exerting antiviral properties (Ng 2005).

Effects on vasodilation

The plausible mechanism of action of NO in vascular 
smooth muscle is illustrated in Figs. 3 and 4.

Furthermore, NO is active in the S-nitrosothiol (RSNO) 
metabolic pathways. In an aerobic environment, RSNO has 

Fig. 2  This figure depicts the mechanism of endothelial dysfunction 
and oxidative stress, with possible therapeutic targets in COVID-19. 
Initiation of COVID-19 infection is by the binding of viral proteins 
to the TMPRSS2 and ACE2. This is followed by the viral uptake into 
the endothelial cells. This enhances the binding of Ang-II to AT-1R 
and activates NADPH-oxidase whereby resulting in increased pro-
duction of ROS. Various signalling pathways get activated by ROS 
and subsequently results in increased production of various interleu-
kins. Thus, the availability of endogenous NO and prostaglandin and 
its analogues is decreased for its action, leading to endothelial dam-

age and destruction. Moreover, increased production of proinflam-
matory markers and prothrombotic factors consequently obstructs the 
blood vessels including the heart and lungs and results in organ dam-
age. Therapeutic targets that could be beneficial in the mechanism 
are also mentioned in the figure. TMPRSS2 transmembrane protease, 
serine 2; ACE2 angiotensin-converting enzyme 2; AT1R angiotensin 
type 1 receptor; ROS reactive oxygen species; c-Src protooncogene 
tyrosine-protein kinase Src; PKC protein kinase C; IL interleukin; 
TNF tissue necrosis factor; NO nitric oxide; PGI2 prostaglandin I2 
(also known as prostacyclin)
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a half-life of 40 min (anaerobic NO has a half-life of 1–5 s, 
aerobic 3 s). It exerts a potent bronchodilator action that is 
independent of the cGMP pathway, lowering airway stress 
and increasing oxygen uptake (Akter et al. 2016).

Vascular impairment and reduced endothelial NO produc-
tion or bioavailability are often associated with hyperten-
sion, diabetes and cardiovascular disorders (Rimmelzwaan 
et  al. 2001). The abovementioned disorders have been 
the most common comorbidities that urge hospitalization 

in COVID-19 patients, compared to other chronic condi-
tions. A meta-analysis showed that the average incidence of 
asthma, coronary and cerebrovascular disorders and diabetes 
was 17.1%, 16.4% and 9.7%, respectively, in six Chinese tri-
als involving 1527 COVID-19 patients (Karupiah and Harris 
1995), implying that NO could play an important role.

Effects on coagulation

Anticoagulants such as heparin, prostaglandin and NO are 
produced by endothelial cells (Drucker 2020). L-arginine 
catalysed by calmodulin-dependent NOS produces NO 
under normoxia, protecting arteries from platelets and cir-
culating cells, thus supporting physiological vascular tissue 
homeostasis. Endothelial cell dysfunction causes pathologi-
cal alterations such as reduced or interrupted NO release, 
depending on the severity of damaged NO causes chronic 
vasoconstriction and a hypercoagulable state in blood by 
increasing the amounts of free  Ca2+ in vascular smooth mus-
cle cells. Platelets secrete a plethora of pro-inflammatory 
mediators that include vascular growth factors. Platelets 
migrate to the damaged area to form platelet clots and form 
a complex with plasma factor VIIa, which then interacts with 
extravascular tissue to activate thrombin. As thrombin con-
verts soluble fibrinogen to insoluble fibrin, the platelet plug 
becomes entangled with blood cells, creating a thrombus. 
Thrombus formation reduces endothelial NO production due 
to endothelial tissue damage.

Individuals with SARS and MERS who are critically ill 
are manifested with abnormal coagulation and a poor prog-
nosis (Wu and McGoogan 2020; Tavazzi et al. 2020a). A 
recent research report says that a key pathogenic event in 

Fig. 3  Protective role of inhaled nitric oxide in mitigating COVID-19 
infection

Fig. 4  The role of nitric oxide 
in the physiology of vasodila-
tion of vascular smooth muscle
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COVID-19 is a hypercoagulable state. A major reason for 
increase in COVID-19 mortality is distal thrombotic prob-
lems (Ferrari et al. 2020). In COVID-19 individuals, early 
coagulation issues included a significant rise in d-dimer and 
fibrin breakdown products, which leads to disseminated 
intravascular coagulation (DIC) in severe instances (Mah-
joub et al., 2020). Patients diagnosed with COVID-19 had 
a substantial rise in d-dimer during hospitalisation, accord-
ing to a clinical report from Jinyintan Hospital in Wuhan 
(Klinger 2002; Monsalve-Naharro et al. 2017; Haddad et al. 
2000). In these infected individuals, both the activated par-
tial thromboplastin time (APTT) and the prothrombin time 
(PT) were considerably increased (Sahni et al. 2017; Ros-
saint et al. 2014; Gebistorf et al. 2016), indicating a risk of 
thrombosis.

Effects on inflammation

Inflammation is a critical defence mechanism for inactivat-
ing pathogens, removing irritants and paving the way for 
tissue healing (Busè et al. 2018). Excessive inflammation, 
on the other hand, causes harm. NO has been proven to 
either promote or inhibit practically every step of inflam-
mation (Everett et al. 2016). During infections, immune 
cells employ germline-encoded pattern recognition receptors 
(PRRs) to recognize infiltrating viruses. PRRs detect exog-
enous pathogen-associated molecular patterns (PAMPs) and 
activate the NF-κB and MAPK pathways. The transcription 
of iNOS is induced by NF-κB and activator protein (AP-1) 
resulting in a rise in NO concentration. NO-induced meta-
bolic events generate cytotoxicity, preventing further spread 
of infections. The bactericidal impact of NO generated by 
iNOS is primarily focused on bacteria in the cytoplasm since 
immune cells are the primary effector cells of iNOS produc-
tion. NO can also destroy extracellular infections through 
diffusion because of its membrane permeability (Thachil 
2020).

Furthermore, NO regulates vascular inflammation by 
reducing vascular dysfunction and minimizing consequences 
of tissue oedema and respiratory failure induced by vascular 
leakage. Inflammation-induced vascular damage is reduced 
by NO (Toolsie et al. 2019). Furthermore, NO suppresses 
immune cell growth during inflammatory responses. NO 
suppresses the production of cytokines and other immune 
cells, including critical inflammatory cytokines (Buckley 
et al. 2021). As a result, excessive inflammatory effects 
are reduced, and NO prevents unrestrained physical injury 
(Mannick 2006).

Antiviral activity

NO has non-specific antiviral effects in several viral ill-
nesses, including AIDS-HIV, coronavirus virus, rotavirus 

and adenovirus (Xu et al. 2006; Boutin et al. 2021). After 
inhibiting iNOS with NG-monomethyl-L-arginine acetate 
(L-NMMA) or nitro-L-arginine methyl ester (L-NAME), 
the viral load rose considerably (Croen 1993). SARS-CoV-1 
was also effectively reduced by exogenous NO donors. The 
mechanism is described below.

Effect on SARS‑CoV‑2 viral lifecycle

A Swedish team investigated the effect of NO donors on 
SARS-CoV-1 infection in VeroE6 cells in 2004 (Akerström 
et al. 2005). According to the findings, SNAP decreased 
SARS-CoV-1 replication at both the RNA and cellular lev-
els in a dose-dependent manner. In addition, researchers 
observed that iNOS expression was associated with 82% 
less offspring viruses.

The non-structural proteins nsp1-nsp16 were involved in 
SARS-CoV-1 replication. The latter contains two cysteine 
proteases, which will be explored further below (Keyaerts 
et al. 2004; Chen et al. 2020a, b). ‘pp1ab’ replicase polypro-
teins are cleaved by cysteine protease with varying degrees 
of effectiveness. Two novel high-molecular-weight peptides 
were discovered after treatment with SNAP. NO inhibits the 
enzyme influencing the synthesis of non-structural proteins 
and stopping viral RNA replication (Connors and Levy 
2020; Long et al. 2020).

It was observed that SNAP administration significantly 
reduced the quantity of palmitoylated S protein. The results 
showed that the pseudo-typed virus’s entry efficiency was 
substantially decreased after SNAP treatment, and the 
viral infection rate dropped by about 70% (Kuprash and 
Nedospasov 2016). During viral infection,  O2− is produced, 
which quickly combines with NO to generate peroxynitrite 
(ONOO −) (Korhonen et al. 2005), a viral inhibitor.

Peroxynitrite, which is generated as a result of the inter-
action between free NO in solution and superoxide anion 
radical  (O2−), has been shown to increase viral RNA muta-
tion rate and lower the infectivity of viral particles (Akaberi 
et al. 2020; Klingström et al. 2006; Akaike et al. 2000). In 
the presence of free NO and nitrogen dioxide  (NO2), dini-
trogen trioxide  (N2O3) is produced, and this ion may donate 
the nitrosonium ion  (NO+) and mediate the nitrosation of 
viral proteins and cellular host components, both of which 
are important for the virus life cycle (Bi and Reiss 1995; 
Colasanti et al. 1999). SNAP’s ability to prevent CPE at 
high doses while not totally inhibiting viral reproduction 
may be explained by one of these methods. Similarly to the 
Coxsackievirus 3C cysteine protease, SARS-CoV-2 3CL 
cysteine protease may be a potential target for S-nitrosa-
tion, with suppression of the protease activity and resultant 
decrease in viral replication (Saura et al. 1999). Scientists 
proved in a research that NO may limit the replication of 
SARS-CoV-2 in the Vero E6 cell line, and they identified the 
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SARS-CoV-2 primary protease as a target for the antioxi-
dant. In order to combat the ongoing COVID-19 pandemic, 
there is an urgent need for effective antivirals against SARS-
CoV-2 to be developed.

NO in COVID‑19: a possible mechanism

The infection processes of SARS-CoV-2 and SARS-CoV-1 
are identical since both rely on viral S protein-mediated 
membrane fusion with the host cell receptor ACE2 to allow 
viral genetic information insertion (Ramachandran et al. 
2018). Cryogenic electron microscopy was used to map the 
SARS-CoV-2 S protein, a trimer with numerous glycosyla-
tion modifications. It has a protein sequence that is extremely 
similar to the SARS-CoV-1 S protein (Kvietys and Granger 
2012). Although the S2 region (mediated membrane fusion) 
is almost identical, the S protein receptor region (RBD) dif-
fers in amino acid residues. This distinction has been shown 
to enhance entry mechanism of CoV-2 into SARS-infected 
cells (Guo and Thomas 2017; Hermann et al. 1997).

As a result, NO may inhibit SARS-CoV-2 in the same 
way as it inhibits SARS-CoV-1. NO also inhibits viral rep-
lication by lowering S protein palmitoylation and blocking 
one or two cysteine proteases encoded by SARS-CoV-2 
ORF1a (Saura et al. 1999; Akerström et al. 2005). However, 
the mechanism of NO in SARS-CoV-2 is unclear. Research-
ers have recommended NO in conjunction with clinically 
authorised antiviral drugs as a potential treatment option 
for COVID-19 (Akerström et al. 2009; Yang et al. 2020).

Clinical relevance of NO and its applications

The role of NO in the treatment of respiratory 
and cardiovascular illnesses

NO precursors, such as sodium nitroprusside (SNP), are 
commonly employed in treatment. SNP is generally given 
intravenously and releases NO as soon as it reaches circu-
lation. It is commonly used as a vasodilator to treat acute 
hypertension. However, because intravenous administration 
of these medications can cause systemic vasodilation and 
arterial hypotension (Snijder et al. 2016), alternative treat-
ments have kindled people’s curiosity.

Healthy paranasal sinus epithelial cells express NOS and 
continually generate substantial quantities of NO gas (Man-
nick 1995). NO enters the deep areas of the lungs at low 
concentrations through inhaled air, encouraging bronchial 
dilatation, vasodilation and enhancing oxygen intake in the 
lungs (Ahmad et al. 2019; Letko et al. 2020). NO is scav-
enged by haemoglobin (Hb) upon entering in circulation, 
limiting systemic vasodilation (Shang et al. 2020). The use 
of inhaled NO (iNO) as a selective pulmonary vasodilator 

in the treatment of respiratory failure in lung disorders has 
been investigated (Andersen et al. 2020). The FDA has 
authorised iNO for the treatment of respiratory infections 
and lung bacterial infections in new-borns (Hoffmann et al. 
2020; Phan 2020). Inhaled NO treatment has been related to 
severe respiratory and inflammatory disorders and has been 
shown to be helpful in surgery and organ transplantation in 
animal trials. Despite the lack of evidence of iNO therapy 
adverse effects, it is important to monitor met-myoglobin, 
nitrogen dioxide  (NO2) levels and blood coagulation changes 
on a regular basis (He et al. 2020; Tahir Ul Qamar et al. 
2020).

Coronavirus primarily infects people through their lungs, 
leading to respiratory failure and permanent lung damage in 
extreme cases. Based on the following therapeutic charac-
teristics, researchers examined at the relevance of iNO as an 
adjuvant for coronavirus-induced respiratory failure.

Role of NO in SARS and MERS

SARS patients died at a rate of 10.5% globally, with around 
20% having ARDS, which is characterised by severe lung 
infiltration and extensive consolidation (Stefano et  al. 
2020; Andreou et al. 2020; Tinker and Michenfelder 1976). 
Patients were routinely treated with corticosteroids and 
ribavirin to treat lung infection, but these medications had 
serious side effects, including femoral head osteonecrosis 
(Lundberg 2008). The best treatment for SARS was yet to 
be determined. Appropriate preventive actions were unques-
tionably required to halt the disease’s progression.

Exogenous inhaled NO was reported to successfully 
restore arterial oxygenation in severe SARS patients while 
simultaneously suppressing the virus in a study done in 
May–July 2003. (Scadding 2007). Following iNO treatment, 
average  SpO2 increased to 99%, while oxygen supply was 
decreased to 2 L/min in this research.

Furthermore, even after discontinuing NO inhalation, 
 SpO2 remained high. The density of pulmonary infiltration 
reduced considerably, and decreased spread or density of 
lung infiltrates was observed. Two patients in the control 
group died, but the other six recovered and were discharged 
within 8 weeks of the study’s conclusion. These findings 
revealed that iNO has good potential for treating SARS 
(Martel et al. 2020b).

Non-invasive ventilation (NIV) was widely employed for 
patients with associated acute hypoxemic respiratory fail-
ure (AHRF) during the MERS epidemic in 2012, while its 
overall efficacy remained debatable (Frostell et al. 1993). 
On August 9, 2018, researchers published findings from 
a multicentre study of severe MERS patients hospitalized 
between September 2012 and October 2015 at 14 col-
laborating tertiary care institutions in five Saudi cities. A 
total of 302 MERS cases were included in this study. Only 
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invasive mechanical ventilation was utilized in 105 (35%) 
of the patients, whereas invasive mechanical ventilation was 
employed in 197 (65%) of the patients (MV). Patients treated 
with NIV were more likely than invasive MV patients to 
require iNO later, indicating the importance of iNO as adju-
vant therapy in the treatment of MERS (Ichinose et al. 2004). 
Many clinical studies have been tried based on the encourag-
ing results from previous SARS and MERS patients.

Application of NO in the therapy of COVID‑19

In another study, around 26% of COVID-19 patients required 
ICU care, with 61% developing ARDS (Barnes and Bris-
bois 2020; Pedersen et  al. 2018). Invasive ventilation 
becomes essential after ARDS develops in individuals with 
hypoxemia (Yu et al. 2019). Furthermore, in severely sick 
patients, there is no alternative for oxygen-breathing assis-
tance. Therefore, iNO has been investigated as a potential 
alternate rescue technique in COVID-19. In March 2020, 
Harvard University and Air Force Medical University 
started a multicentre clinical research to examine if con-
tinuous NO inhalation might be used as a rescue therapy 
to improve COVID-19 patients’ oxygenation and survival. 
Patients may be gradually weaned off iNO once  PaO2/FiO2 
reached > 300 mmHg within 24 h, according to the findings. 
 NO2 (2 ppm) and methemoglobin (5%) levels were continu-
ously monitored during the experiment to verify that it ran 
smoothly (Manocha et al. 2003). The outcomes have not 
been published yet.

In May 2020, University Health Network submitted a 
clinical research on the safety and effectiveness of high-
dose iNO (160 ppm, high medical dose) in COVID-19 
patients on mechanical ventilation in reversing viral load 
and respiratory failure. The primary outcome was COVID-
19 PCR status from tracheal aspirate at the end of therapy 
(Chen et al. 2004). Similar studies were conducted, such 
as EUCTR2020-001,329–30-AT (Peiris et al. 2003), which 
focused on iNO treatment in failing pulmonary patients.

Tufts Medical Center conducted a pilot randomized-
controlled (2:1) open-label study of iNO to avoid aggrava-
tion of severe illness in 42 COVID-19 dyspnoea patients 
in the same month. The participants were given NO 
through an iNO pulse device, and the primary goal was to 
see if iNO treatment reduces the progression of systemic 
hypoxia over 28 days (Lai 2005). Nitric Solutions-Mobile 
Unit (Arabi et  al. 2014) is doing a similar experiment 
with NCT03331445, focusing on patients with respiratory 
distress.

On August 26, 2020, Massachusetts General Hospital 
announced the results of a clinical trial of iNO in pregnant 
patients with severe COVID-19. In the months of April 
through June 2020, they received a total of 39 treatments 
of high-dose NO (160–200 ppm) administered twice a day. 

Following the start of NO administration, there was an 
improvement in cardiopulmonary function, as evidenced 
by an increase in systemic oxygenation among those with 
baseline hypoxemia in each administration session and a 
decrease in tachypnea in all patients in each administration 
session (Alraddadi et al. 2019). The researchers discovered 
that a dose of 160–200 ppm iNO was well tolerated by preg-
nant women with hypoxic respiratory failure (Yang et al. 
2020).

With the COVID-19 pandemic affecting tens of millions 
of people throughout the world, it is more important than 
ever to discover safe and effective ways to stop the illness 
from spreading. NO has been found to help patients recover 
by inhibiting viral transmission, enhancing viral clearance 
and aiding in viral clearance. As a result, researchers pos-
tulated that exogenous NO may help prevent SARS-CoV-2 
infection, and iNO has just been proven to be effective.

A randomised clinical trial of iNO was conducted to 
decrease COVID-19 infection among healthcare workers. It 
was aimed to help healthcare workers who came into con-
tact with COVID-19 patients on a daily basis. The incidence 
of COVID-19 was evaluated between the iNO and control 
groups. Based on clinical evidence from China and Italy, 
iNO inhalation was projected to reduce the prevalence to 
5% (Wang 2020).

COVID‑19 and sex differences

Stratified data by sex is seldom reported in the literature, and 
recent information on coronavirus disease 2019 (COVID-
19) and its results are much the same. Approximately 1.6 
to 2.8 male fatalities per 1000 female deaths are reported 
by nations participating in the Global Health 50/50 project 
(Bhopal 2020). Data from China, Korea and Europe show 
comparable case of fatality percentages, as well as a likely 
age interaction (Dudley and Lee 2020; Gebhard et al. 2020). 
Consistent findings from observational studies indicate that 
men and the elderly are highly represented among cases 
of severe disease (Guan et al. 2020; Wang et al. 2020a, b; 
Petrilli et al. 2020), intensive care unit admissions (Simon-
net et al. 2020; Grasselli et al. 2020; Yang et al. 2020) and 
infection-related mortality. Studies stratified by sex have also 
shown that male sex is a risk factor for poor outcomes and 
higher mortality (Dudley and Lee 2020; Petrilli et al. 2020; 
Al-Rousan and Al-Najjar 2020; Alkhouli et al. 2020; Jin 
et al. 2020; Qin et al. 2020). Due to the nature of examining 
an emerging illness, large, rigorous sex-stratified studies are 
restricted.

In COVID-19-related morbidity and mortality, sex dif-
ferences (chromosomes, reproductive organs and related sex 
factors) likely combine with gender-specific factors (appear-
ances and activities defined by social and cultural/traditional 
roles) to explain the disparity (Gebhard et al. 2020). Men 
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are more likely than women to smoke and drink alcohol 
(Reitsma et al. 2017; GBD 2015 Tobacco Collaborators 
2017), and they have higher rates of pre-existing conditions 
that make it more likely that they will die from COVID-
19. In addition, even after adjusting for age, the impact of 
comorbidities on COVID-19 mortality was larger in men 
than in women, according to a sex-stratified analysis. The 
different responses to the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) virus by sex might be due to 
a variety of molecular processes. However, the relationship 
between sex and COVID-19 health outcomes is rarely stud-
ied or translated into prevention or clinical settings, regard-
less of its magnitude or independence. Numerous factors, 
which are more prevalent in males, almost certainly contrib-
ute to worse COVID-19 outcomes, and concerns have been 
raised about the possibility of ACE inhibitors or angiotensin 
receptor blockers having detrimental effects in COVID-19. 
The immunological response is that females have a higher 
total immune response whereas men are more prone to 
produce the cytokine storm with poor COVID-19 results. 
Men have a lower survival rate than women, which may be 
explained by immunomodulation by sex hormones, age and 
X-linked gene expression and provide an insight on course 
of infection and sex differences (Haitao et al. 2020). Clinical 
studies are currently being conducted to evaluate the effec-
tiveness of such treatment in COVID-19 patients, as well as 
whether it varies by gender. The relationship between bio-
logical sex and the risk of infection and disease prognosis, 
on the other hand, is complicated, and the evidence provided 
is inconsistent.

While the total urine nitrate excretion does not vary 
between the two groups, the findings of an investigation 
demonstrate that the whole-body conversion of L-arginine to 
nitrate is more in healthy women than in males (Forte et al. 
1998). The amount of nitrate excreted in the urine during a 
36-h period is linked with the mean arterial pressure (MAP) 
throughout the whole group of patients investigated, and 
with serum 17-estradiol levels in the female group, respec-
tively. Nitrate is formed by the oxidation of NO, which is 
generated by the enzyme NO synthase from the amino acid 
L-arginine. After finding a strong correlation between gender 
and urine nitrate excretion, they investigated the possibility 
that nitric oxide synthesis is affected by gender difference 
also which could be a reason for increased infectivity in 
males than females.

Limitations of NO in COVID‑19 scenario

Before invasive therapy, inhaled NO has been recommended 
as an alternate rescue technique, particularly for alleviating 
hypoxemia. Recent Italian investigations, on the other hand, 
demonstrate that NO is ineffective in restoring oxygenation 

in patients on long-term mechanical ventilation who have 
developed chronic hypoxemia (Li et al. 2020). Damage from 
effectors and a high viral infection might explain why NO 
is ineffective in treating people who need a lot of oxygen. 
In the vascular and immunological systems, target effectors 
of NO are usually cells or viruses. As a result, for critically 
ill COVID-19 patients, routine breathing support and oxy-
genation treatment should focus on more strong antiviral 
medications. Therefore, iNO therapy should be evaluated 
in this context, especially in treating critically sick patients.

Despite significant research into the therapeutic ben-
efits of iNO in COVID-19, the dose of iNO that is safe 
and beneficial is unknown. COVID-19 patients were given 
therapeutic doses ranging from 20 to 300 ppm. Quite a few 
researches have been conducted at iNO levels of 80, 150 and 
160 ppm for safety and effectiveness (Parikh et al. 2020). 
The results of these researches have yet to be made public. 
Only a few studies have shown that therapeutic devices for 
iNO, such as GENOSYL, LungFit Delivery System and INO 
pulse, are effective or safe in the treatment of COVID-19 
(Tsui et al. 2003).

Conclusion

COVID-19 patients exhibited decreased NO levels and bio-
availability, indicating that exogenous NO supplementation 
might aid in infection prevention or treatment. Here, the 
overall features and likely pathways of how NO functions in 
COVID-19 pathogenesis, as well as its possible therapeutic 
uses, are addressed. Inhaled NO may be used for COVID-19 
prophylaxis and management at many phases, including viral 
entry prevention, providing symptomatic relief critically ill 
patients and adjuvant treatment for mechanically ventilated 
patients. Despite its potential, safety and efficacy of iNO 
must be investigated further.

Future perspectives

COVID-19 has emerged as a pandemic with the potential 
to overwhelm the body and healthcare system, and patients 
urgently need effective medications to halt the illness in their 
body and societies. While the hunt for a vaccine and special-
ized therapies continues, most medical research is focusing 
on the pathophysiology of the illness to see if there are any 
possible places of intervention. In other pulmonary disease 
models, nitric oxide has shown potential for reducing inflam-
mation, and early proofs of concept for COVID-19 treatment 
are desperately needed. The potential of nitric oxide (NO) for 
the treatment of coronavirus and COVID-19 infection has 
received more attention in the last 2 months. When adminis-
tered to the correct population and at the right stage of illness, 
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exogenous NO treatment may be an appealing and viable 
option for patients. Nitric oxide therapy might be crucial in 
the world’s battle against such an impending danger to public 
health if its effectiveness is shown as pharma companies seek 
its approval for COVID-19. NO-based prodrugs such as R-107 
and COViNOX, two well-known examples, are now tested 
in clinical trials against the COVID-19 virus. So it is worth 
reviewing the literature in order to determine whether or if 
this simple chemical is useful in treating COVID-19, as well 
as the potential mechanism of action against coronaviruses and 
the implications of the findings for future studies in this area 
of inquiry. If the bioavailability of NO is discovered to be less 
than ideal, it may be beneficial to introduce the usage of NO 
boosters and clinically authorised NO-releasing substances 
with the goal of delivering NO to the body. As a result, the 
potent antiviral actions of NO against coronaviruses, as well as 
the role it plays in alleviating the clinical severity of COVID-
19, justify the decision to include NO as a treatment option 
for this illness. In addition, using nanoparticles that release 
NO can target the pathophysiology of the virus in the respira-
tory tract and may stop it from spreading throughout the body. 
Successful outcomes would help to improve patient outcomes 
and reduce the burden on healthcare systems. Overall, NO has 
proved beneficial for millions of critically ill patients around 
the world since it was discovered and studied. Continuing on 
this path is a worthwhile endeavour.
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